Приложение к основной образовательной программе основного общего образования МАОУ СОШ № 8

Рабочая программа учебного предмета «Геометрия» 7-9 класс основного общего образования

Составители: Новосёлова И.А. учитель математики Сивкова Н.А., учитель математики

Рабочая программа по предмету «Геометрия» для основной школы МАОУ СОШ № 8

7-9-й классы

Программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования и обеспечена УМК для 7—9-го классов авторов Л.С. Атанасян и др.

І. Пояснительная записка

Обучение математике в основной школе направлено на достижение следующих целей:

1. В направлении личностного развития:

- развитие логического и критического мышления, культуры речи, способности к умствен- ному эксперименту;
- формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
- воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
- формирование качеств мышления, необходимых для адаптации в современном информационном обществе;
- развитие интереса к математическому творчеству и математических способностей.

2. В метапредметном направлении:

- формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
- развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;
- формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности.

3. В предметном направлении:

- овладение математическими знаниями и умениями, необходимыми для продолжения обучения в старшей школе или иных общеобразовательных учреждениях, изучения смежных дисциплин, применения в повседневной жизни;
- создание фундамента для развития математических способностей и механизмов мышления, формируемых математической деятельностью.

В ходе изучения материала предполагается закрепление и отработка основных умений и навыков, их совершенствование, а также систематизация полученных ранее знаний.

Таким образом, решаются следующие задачи:

- введение терминологии и отработка умения ее грамотного использования;
- развитие навыков изображения планиметрических фигур и простейших геометрических конфигураций;

- совершенствование навыков применения свойств геометрических фигур как опоры при решении задач;
 - формирование умения доказывать равенство данных треугольников;
- отработка навыков решения простейших задач на построение с помощью циркуля и линейки;
- формирование умения доказывать параллельность прямых с использованием соответствующих признаков, находить равные углы при параллельных прямых, что требуется для изучения дальнейшего курса геометрии;
 - расширение знаний учащихся о треугольниках.

Рабочая программа по геометрии составлена на основе Фундаментального ядра содержания общего образования и Требований к результатам освоения основной общеобразовательной программы основного общего образования, представленных в Федеральном государственном образовательном стандарте общего образования. В ней также учитываются основные идеи и положения Программы развития и формирования универсальных учебных действий для основного общего образования.

Овладение учащимися системой геометрических знаний и умений необходимо в повседневной жизни для изучения смежных дисциплин и продолжения образования. Практическая значимость школьного курса геометрии обусловлена тем, что её объектом являются пространственные формы и количественные отношения действительного мира.

Геометрическая подготовка необходима для понимания принципов устройства и использования современной техники, восприятия научных и технических понятий и идей.

Геометрия является одним из опорных предметов основной школы: она обеспечивает изучение других дисциплин. В первую очередь это относится к предметам естественно -научного цикла, в частности к физике. Развитие логического мышления учащихся при обучении геометрии способствует также усвоению предметов гуманитарного цикла. Практические умения и навыки геометрического характера необходимы трудовой ДЛЯ деятельности профессиональной подготовки школьников. Развитие у учащихся правильных сущности и происхождении геометрических представлений соотношении реального и идеального, характере отражения математической наукой явлений и процессов реального мира, месте геометрии в системе наук и роли математического моделирования в научном познании и в практике формированию научного мировоззрения учащихся, формированию качеств мышления, необходимых для адаптации в современном информационном обществе.

Требуя от учащихся умственных и волевых усилий, концентрации внимания, активности развитого воображения, геометрия развивает нравственные черты личности (настойчивость, целеустремлённость, творческую активность, самостоятельность, ответственность, трудолюбие, дисциплину, критичность мышления) и умение аргументированно отстаивать свои взгляды и убеждения, а также способность принимать самостоятельные решения.

Геометрия существенно расширяет кругозор учащихся, знакомя их с индукцией и дедукцией, обобщением и конкретизацией, анализом и синтезом, классификацией и систематизацией, абстрагированием, аналогией. Активное использование задач на всех этапах учебного процесса развивает творческие способности школьников.

При обучении геометрии формируются умения и навыки умственного труда — планирование своей работы, поиск рациональных путей её выполнения, критическая оценка результатов. В процессе обучения геометрии школьники должны научиться излагать свои мысли ясно и исчерпывающе, лаконично и ёмко, приобрести навыки чёткого, аккуратного и грамотного выполнения математических записей.

Важнейшей школьного курса геометрии является задачей логического мышления учащихся. Сами объекты геометрических умозаключений и принятые в геометрии правила их конструирования способствуют формированию умений обосновывать и доказывать суждения, приводить чёткие определения, развивают логическую интуицию, кратко и наглядно вскрывают механизм логических построений и учат их применению. Тем самым геометрия занимает ведущее место в формировании научно- теоретического мышления школьников. Раскрывая внутреннюю гармонию математики, формируя понимание красоты и изящества математических рассуждений, способствуя восприятию геометрических форм, усвоению понятия симметрии, геометрия вносит значительный вклад в Еë изучение эстетическое воспитание учащихся. развивает воображение обогащает школьников, существенно И развивает ИΧ пространственные представления.

В ходе преподавания геометрии в 7-9 классах, работы над формированием у учащихся универсальных учебных действий следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

- планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;
- решения разнообразных классов задач из раз- личных разделов курса, в том числе задач, требующих поиска пути и способов решения;
- исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
- ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;
- проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;
 - поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.

II. Нормативно-правовая база образовательной программы:

- 1. Закон РФ «Об образовании» от 29.12.2012 № 273;
- 2. Типовое положением об общеобразовательном учреждении (постановление Правительства РФ от 19.03.2001, № 196);
- 3. Приказ Министерства образования и науки Российской Федерации № 1897 от 17 декабря 2010г. «Об утверждении и введении в действие федерального государственного образовательного стандарта основного общего образования»
- 4. Федеральный государственный образовательный стандарт основного общего образования;
- 5. Концепция духовно-нравственного развития и воспитания личности гражданина России;
 - 6. Примерная основная образовательная программа ООО А.М.Кондакова.
 - 7. Примерные программы по учебным предметам;
- 8. Федеральный перечень учебников, рекомендованных Министерством образования и науки Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях, на 2013 2014;
- 9. Программы к учебникам Геометрия. 7-9 классы: учебник для общеобразовательных учреждений / Л.С. Атанасян [и др.]. М.: Просвещение, 2011.
- 10. СанПиН 2.4.2.2821-10 «Санитарно-эпидемиологические требования к условиям и организации обучения в общеобразовательных учреждениях;
 - 11. Устав МБОУ «Калининская СОШ»;
 - 12. Программа развития школы;
 - 13. Локальные акты школы.

III. Общая характеристика учебного предмета «Геометрия»

В курсе геометрии условно можно выделить следующие содержательные линии: «Наглядная геометрия», «Геометрические фигуры», «Измерение геометрических величин», «Координаты», «Векторы», «Логика и множества», «Геометрия в историческом разаитии».

Материал, относящийся к линии «Наглядна геометрия» (элементы наглядной стереометрии) способствует развитию пространственных представлений учащихся в рамках изучения планиметрии.

Содержание разделов «Геометрические фигуры» и «Измерение геометрических величин» нацелено на получение конкретных знаний о геометрической фигуре как важнейшей математической модели для описания окружающего мира. Систематическое изучение свойств геометрических фигур позволит развить логическое мышление и показать применение этих свойств при решении задач вычислительного и конструктивного характера, а также практических.

Материал, относящийся к содержательным линиям «Координаты» и «Векторы», в значительной степени несёт в себе межпредметные знания, которые находят применение как в различных математических дисциплинах, так и в смежных предметах.

Особенностью линии «Логика и множества» является то, что представленный здесь материал преимущественно изучается при рассмотрении различных вопросов курса. Соответствующий материал нацелен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи.

Линия «Геометрия в историческом развитии» предназначена для формирования представлений о геометрии как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения.

IV. Описание места учебного предмета «Геометрия» в учебном плане

Согласно учебному плану на изучение геометрии в 7 - 9 классах отводится 70 часов (2 часа в неделю; 35 учебных недели) в 7 классе, 70 часов (2 часа в неделю; 35 учебных недели) в 8 классе и 70часов (2 часа в неделю; 35 учебных недели) в 9 классе.

V. Личностные, метапредметные и предметные результаты освоения учебного предмета «Геометрия»

Личностные:

у учащихся будут сформированы:

- 1) ответственное отношение к учению;
- 2) готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;
- 3) умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
 - 4) начальные навыки адаптации в динамично изменяющемся мире;
- 5) экологическая культура: ценностное отношение к природному миру, готовность следовать нормам природоохранного, здоровьесберегающего поведения;
- 6) формирование способности к эмоциональному восприятию математических объ-ектов, задач, решений, рассуждений;
- 7) умение контролировать процесс и результат учебной математической деятельности;

у учащихся могут быть сформированы:

- 1) первоначальные представления о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;
- 2) коммуникативная компетентность в общении и сотрудничестве со сверстниками в образовательной, учебно-исследовательской, творческой и других видах деятельности;
- 3) критичность мышления, умение распознавать логически некорректные высказы-вания, отличать гипотезу от факта;
- 4) креативность мышления, инициативы, находчивости, активности при решении арифметических задач.

Метапредметные:

регулятивные

учащиеся научатся:

1) формулировать и удерживать учебную задачу;

- 2) выбирать действия в соответствии с поставленной задачей и условиями её ре-ализации;
- 3) планировать пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
 - 4) предвидеть уровень усвоения знаний, его временных характеристик;
 - 5) составлять план и последовательность действий;
 - 6) осуществлять контроль по образцу и вносить необходимые коррективы;
- 7) адекватно оценивать правильность или ошибочность выполнения учебной зада-чи, её объективную трудность и собственные возможности её решения;
- 8) сличать способ действия и его результат с заданным эталоном с целью обнару-жения отклонений и отличий от эталона;

учащиеся получат возможность научиться:

- 1)определять последовательность промежуточных целей и соответствующих им действий с учетом конечного результата.
- 2) предвидеть возможности получения конкретного результата при решении задач;
- 3) осуществлять констатирующий и прогнозирующий контроль по результату и по способу действия;
- 4) выделять и формулировать то, что усвоено и что нужно усвоить, определять ка-чество и уровень усвоения;
- 5) концентрировать волю для преодоления интеллектуальных затруднений и физи-ческих препятствий;

познавательные

учащиеся научатся:

- 1) самостоятельно выделять и формулировать познавательную цель;
- 2) использовать общие приёмы решения задач;
- 3) применять правила и пользоваться инструкциями и освоенными закономерностями;
 - 4) осуществлять смысловое чтение;
- 5) создавать, применять и преобразовывать знаково-символические средства, моде-ли и схемы для решения задач;
- 6) самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
- 7) понимать сущность алгоритмических предписаний и уметь действовать в соот-ветствии с предложенным алгоритмом;
- 8) понимать и использовать математические средства наглядности (рисунки, черте-жи, схемы и др.) для иллюстрации, интерпретации, аргументации;
- 9) находить в различных источниках информацию, необходимую для решения ма-тематических проблем, и представлять её в понятной форме; принимать решение в усло-виях неполной и избыточной, точной и вероятностной информации;

учащиеся получат возможность научиться:

- 1) устанавливать причинно-следственные связи; строить логические рассуждения, умозаключения (индуктивные, дедуктивные и по аналогии) и выводы;
- 2) формировать учебную и общепользовательскую компетентности в области ис-пользования информационно-коммуникационных технологий (ИКТ-компетентности);
- 3) видеть математическую задачу в других дисциплинах, в окружающей жизни;
- 4) выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
- 5) планировать и осуществлять деятельность, направленную на решение задач ис-следовательского характера;
 - 6) выбирать наиболее рациональные и эффективные способы решения задач;
- 7) интерпретировать информацию (структурировать, переводить сплошной текст в таблицу, презентовать полученную информацию, в том числе с помощью ИКТ);
 - 8) оценивать информацию (критическая оценка, оценка достоверности);
- 9) устанавливать причинно-следственные связи, выстраивать рассуждения, обобщения;

коммуникативные

учащиеся научатся:

- 1) организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников;
- 2) взаимодействовать и находить общие способы работы; работать в группе: нахо-дить общее решение и разрешать конфликты на основе согласования позиций и учёта ин-тересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;
- 3) прогнозировать возникновение конфликтов при наличии разных точек зрения;
- 4) разрешать конфликты на основе учёта интересов и позиций всех участников;
 - 5) координировать и принимать различные позиции во взаимодействии;
- 6) аргументировать свою позицию и координировать её с позициями партнёров в сотрудничестве при выработке общего решения в совместной деятельности.

Предметные:

учащиеся научатся:

1) работать с геометрическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, при-меняя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), обосновывать суждения, проводить классификацию;

- 2) владеть базовым понятийным аппаратом: иметь представление о числе, дроби, об основных геометрических объектах (точка, прямая, ломаная, угол, многоугольник, круг, окружность);
 - 3) измерять длины отрезков, величины углов;
 - 4) владеть навыками устных, письменных, инструментальных вычислений;
 - 5) пользоваться изученными геометрическими формулами;
- 6) пользоваться предметным указателем энциклопедий и справочников для нахождения информации;

учащиеся получат возможность научиться:

- 1) выполнять арифметические преобразования выражений, применять их для решения геометрических задач и задач, возникающих в смежных учебных предметах;
- 2) применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов;
- 3) самостоятельно действовать в ситуации неопределённости при решении актуальных для них проблем, а также самостоятельно интерпретировать результаты решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений;
- 4) основным способам представления и анализа статистических данных; решать задачи с помощью перебора возможных вариантов.

VI. Предметными результатами изучения предмета «Геометрия» являются следующие умения.

Выпускник научится:

- 1) распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;
- 2) распознавать развертки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;
- 3) определять по линейным размерам развертки фигуры линейные размеры самой фигуры и наоборот;
 - 4) вычислять объем прямоугольного параллелепипеда;

Выпускник получит возможность:

- 5) вычислять объемы пространственных геометрических фигур, составленных их прямоугольных параллелепипедов;
- 6) углубить и развить представления о пространственных геометрических фигурах;
 - 7) применять понятие развертки для выполнения практических расчетов.

Геометрические фигуры

Выпускник научится:

1) пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;

- 2) распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;
- 3) находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0^0 до 180^0 , применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрии, поворота, параллельный перенос);
- 4) оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов;
- 5) решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;
- 6) решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;
 - 7) решать простейшие планиметрические задачи в пространстве.

Выпускник получит возможность:

- 8) овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;
- 9) приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;
- 10) овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;
- 11) научиться решать задачи на построение методом геометрического места точек и методом подобия;
- 12) приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ;
- 13) приобрести опыт выполнения проектов по темам: «Геометрические преобразования на плоскости», «Построение отрезков по формуле».

Измерение геометрических величин

Выпускник научится:

- 1) использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла;
- 2) вычислять длины линейных элементов фигур и их углы, используя формулы длины окружности и длины дуги окружности, формулы площадей фигур;
- 3) вычислять площади треугольников, прямоугольников, параллелограммов, трапеций, кругов и секторов;
- 4) вычислять длину окружности, длину дуги окружности;
- 5) решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул площадей фигур;
- 6) решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства);

Выпускник получит возможность:

- 7) вычислять площади фигур, составленных их двух или более прямоугольников, параллелограммов, треугольников, круга и сектора;
- 8) вычислять площади многоугольников, используя отношения равновеликости и равносоставленности;
- 9) приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении задач на вычисление площадей многоугольников.

Координаты

Выпускник научится:

- 1) вычислять длину отрезка по координатам его концов; вычислять координаты середины отрезка;
- 2) использовать координатный метод для изучения свойств прямых и окружностей;

Выпускник получит возможность:

- 3) овладеть координатным методом решения задач на вычисление и доказательство;
- 4) приобрести опыт использования компьютерных программ для анализа частных случаев взаимного расположения окружностей и прямых;
- 5) приобрести опыт выполнения проектов на тему «Применение координатного метода при решении задач на вычисление и доказательство».

Векторы

Выпускник научится:

- 1) оперировать с векторами: находить сумму и разность двух векторов, заданных геометрически, находить вектор, равный произведению заданного вектора на число;
- 2) находить для векторов, заданных координатами: длину вектора, координаты суммы и разности двух и более векторов, координаты произведения вектора на число, применяя при необходимости сочетательный, переместительный и распределительный законы;
- 3) вычислять скалярное произведение векторов, находить угол между векторами, устанавливать перпендикулярность прямых.

Выпускник получит возможность:

- 4) овладеть векторным методом для решения задач на вычисление и доказательство;
- 5) приобрести опыт выполнения проектов на тему «Применение векторного метода при решении задач на вычисление и доказательство».

VII. Содержание учебного предмета «Геометрия» 7 класс

Место предмета в базисном учебном плане Согласно Федеральному базисному учебному плану для образовательных учреждений Российской Федерации обязательному изучению математики на этапе основного общего образования отводится не менее 68 часов из расчета 2 часа в неделю.

Начальные геометрические сведения

Простейшие геометрические фигуры: прямая, точка, отрезок, луч, угол. Понятие равенства геометрических фигур. Сравнение отрезков и углов. Измерение отрезков, длина отрезка. Измерение углов, градусная мера угла. Смежные и вертикальные углы, их свойства. Перпендикулярные прямые.

Основная цель — систематизировать знания учащихся о простейших геометрических фигурах и их свойствах; ввести понятие равенства фигур.

В данной теме вводятся основные геометрические понятия и свойства простейших геометрических фигур на основе наглядных представлений учащихся путем обобщения очевидных или известных из курса математики 1—6 классов геометрических фактов. Понятие аксиомы на начальном этапе обучения не вводится, и сами аксиомы не формулируются в явном виде. Необходимые исходные положения, на основе которых изучаются свойства геометрических фигур, приводятся в описательной форме. Принципиальным моментом данной темы является введение понятия равенства геометрических фигур на основе наглядного понятия наложения. Определенное внимание должно уделяться практическим приложениям геометрических понятий.

Треугольники

Треугольник. Признаки равенства треугольников. Перпендикуляр к прямой. Медианы, биссектрисы и высоты треугольника. Равнобедренный треугольник и его свойства. Задачи на построение с помощью циркуля и линейки.

Основная цель — ввести понятие теоремы; выработать умение доказывать равенство треугольников с помощью изученных признаков; ввести новый класс задач — на построение с помощью циркуля и линейки.

Признаки равенства треугольников являются основным рабочим аппаратом всего курса геометрии. Доказательство большей части теорем курса и также решение многих задач проводится по следующей схеме: поиск равных треугольников — обоснование их равенства с помощью какого-то признака — следствия, вытекающие из равенства треугольников. Применение признаков равенства треугольников при решении задач дает возможность постепенно накапливать опыт проведения доказательных рассуждений. На начальном этапе изучения и применения признаков равенства треугольников целесообразно использовать задачи с готовыми чертежами.

Параллельные прямые

Признаки параллельности прямых. Аксиома параллельных прямых. Свойства параллельных прямых.

Основная цель — ввести одно из важнейших понятий — понятие параллельных прямых; дать первое представление об аксиомах и аксиоматическом методе в геометрии; ввести аксиому параллельных прямых.

Признаки и свойства параллельных прямых, связанные с углами, образованными при пересечении двух прямых секущей (накрест лежащими, односторонними, соответственными), широко используются в дальнейшем при изучении четырехугольников, подобных треугольников, при решении задач, а также в курсе стереометрии.

Соотношения между сторонами и углами треугольника

Сумма углов треугольника. Соотношение между сторонами и углами треугольника. Неравенство треугольника. Прямоугольные треугольники, их свойства и признаки равенства. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Построение треугольника по трем элементам.

Основная цель — рассмотреть новые интересные и важные свойства треугольников.

В данной теме доказывается одна из важнейших теорем геометрии — теорема о сумме углов треугольника. Она позволяет дать классификацию треугольников по углам (остроугольный, прямоугольный, тупоугольный), а также установить некоторые свойства и признаки равенства прямоугольных треугольников.

Понятие расстояния между параллельными прямыми вводится на основе доказанной предварительно теоремы о том, что все точки каждой из двух параллельных прямых равноудалены от другой прямой. Это понятие играет важную роль, в частности используется в задачах на построение.

При решении задач на построение в 7 классе следует ограничиться только выполнением и описанием построения искомой фигуры. В отдельных случаях можно провести устно анализ и доказательство, а элементы исследования должны присутствовать лишь тогда, когда это оговорено условием задачи.

Повторение. Решение задач

Основная цель. Повторить, закрепить и обобщить основные ЗУН, полученные в 7 классе.

8 класс

Четырехугольники

Многоугольник, выпуклый многоугольник, четырехугольник. Параллелограмм, его свойства и признаки. Трапеция. Прямоугольник, ромб, квадрат, их свойства. Осевая и центральная симметрии.

Основная цель — изучить наиболее важные виды четырехугольников — параллелограмм, прямоугольник, ромб, квадрат, трапецию; дать представление о фигурах, обладающих осевой или центральной симметрией.

Доказательства большинства теорем данной темы и решения многих задач проводятся с помощью признаков равенства треугольников, поэтому полезно их повторить в начале изучения темы.

Осевая и центральная симметрии вводятся не как преобразование плоскости, а как свойства геометрических фигур, в частности четырехугольников. Рассмотрение этих понятий как движений плоскости состоится в 9 классе.

Площадь

Понятие площади многоугольника. Площади прямоугольника, параллелограмма, треугольника, трапеции. Теорема Пифагора.

Основная цель — расширить и углубить полученные в 5—6 классах представления учащихся об измерении и вычислении площадей; вывести формулы площадей прямоугольника, параллелограмма, треугольника, трапеции; доказать одну из главных теорем геометрии — теорему Пифагора.

Вывод формул для вычисления площадей прямоугольника, параллелограмма, треугольника, трапеции основывается на двух основных свойствах площадей, которые принимаются исходя из наглядных представлений, а также на формуле площади квадрата, обоснование которой не является обязательным для учащихся.

Нетрадиционной для школьного курса является теорема об отношении площадей треугольников, имеющих по равному углу. Она позволяет в дальнейшем дать простое доказательство признаков подобия треугольников. В этом состоит одно из преимуществ, обусловленных ранним введением понятия площади.

Доказательство теоремы Пифагора основывается на свойствах площадей и формулах для площадей квадрата и прямоугольника. Доказывается также теорема, обратная теореме Пифагора.

Подобные треугольники

Подобные треугольники. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Синус, косинус и тангенс острого угла прямоугольного треугольника.

Основная цель — ввести понятие подобных треугольников; рассмотреть признаки подобия треугольников и их применения; сделать первый шаг в освоении учащимися тригонометрического аппарата геометрии.

Определение подобных треугольников дается не на основе преобразования подобия, а через равенство углов и пропорциональность сходственных сторон.

Признаки подобия треугольников доказываются с помощью теоремы об отношении площадей треугольников, имеющих по равному углу.

На основе признаков подобия доказывается теорема о средней линии треугольника, утверждение о точке пересечения медиан треугольника, а также два утверждения о пропорциональных отрезках в прямоугольном треугольнике. Дается представление о методе подобия в задачах на построение.

В заключение темы вводятся элементы тригонометрии — синус, косинус и тангенс острого угла прямоугольного треугольника.

Окружность

Взаимное расположение прямой и окружности. Касательная к окружности, ее свойство и признак. Центральные и вписанные углы. Четыре замечательные точки треугольника. Вписанная и описанная окружности.

Основная цель — расширить сведения об окружности, полученные учащимися в 7 классе; изучить новые факты, связанные с окружностью; познакомить учащихся с четырьмя замечательными точками треугольника.

В данной теме вводится много новых понятий и рассматривается много утверждений, связанных с окружностью. Для их усвоения следует уделить большое внимание решению задач.

Утверждения о точке пересечения биссектрис треугольника и точке пересечения серединных перпендикуляров к сторонам треугольника выводятся как следствия из теорем о свойствах биссектрисы угла и серединного перпендикуляра к отрезку. Теорема о точке пересечения высот треугольника (или их продолжений) доказывается с помощью утверждения о точке пересечения серединных перпендикуляров.

Наряду с теоремами об окружностях, вписанной в треугольник и описанной около него, рассматриваются свойство сторон описанного четырехугольника и свойство углов вписанного четырехугольника.

Повторение. Решение задач

Основная цель. Повторить, закрепить и обобщить основные ЗУН, полученные в 8 классе.

9 класс

Векторы. Метод координат

Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Простейшие задачи в координатах. Уравнения окружности и прямой. Применение векторов и координат при решении задач.

Основная цель — научить учащихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач.

Вектор определяется как направленный отрезок и действия над векторами вводятся так, как это принято в физике, т. е. как действия с направленными отрезками. Основное внимание должно быть уделено выработке умений выполнять операции над векторами (складывать векторы по правилам треугольника и параллелограмма, строить вектор, равный разности двух данных векторов, а также вектор, равный произведению данного вектора на данное число).

На примерах показывается, как векторы могут применяться к решению геометрических задач. Демонстрируется эффективность применения формул для координат середины отрезка, расстояния между двумя точками, уравнений окружности и прямой в конкретных геометрических задачах, тем самым дается представление об изучении геометрических фигур с помощью методов алгебры.

Соотношения между сторонами и углами треугольника. Скалярное произведение векторов

Синус, косинус и тангенс угла. Теоремы синусов и косинусов. Решение треугольников. Скалярное произведение векторов и его применение в геометрических задачах.

Основная цель — развить умение учащихся применять тригонометрический аппарат при решении геометрических задач.

Синус и косинус любого угла от 0° до 180° вводятся с помощью единичной полуокружности, доказываются теоремы синусов и косинусов и выводится еще одна формула площади треугольника (половина произведения двух сторон на синус угла между ними). Этот аппарат применяется к решению треугольников.

Скалярное произведение векторов вводится как в физике (произведение длин векторов на косинус угла между ними). Рассматриваются свойства скалярного произведения и его применение при решении геометрических задач.

Основное внимание следует уделить выработке прочных навыков в применении тригонометрического аппарата при решении геометрических задач.

Длина окружности и площадь круга

Правильные многоугольники. Окружности, описанная около правильного многоугольника и вписанная в него. Построение правильных многоугольников. Длина окружности Площадь круга.

Основная цель — расширить знание учащихся о многоугольниках; рассмотреть понятия длины окружности и площади круга и формулы для их вычисления.

В начале темы дается определение правильного многоугольника, и рассматриваются теоремы об окружностях, описание около правильного многоугольника и вписанной в него. С помощью описанной окружности решаются задачи о построении правильного шестиугольника и правильного 2n-угольника, если дан правильный n-угольник.

Формулы, выражающие сторону правильного многоугольник и радиус вписанной в него окружности через радиус описанной окружности, используются при выводе формул длины окружности и площади круга. Вывод опирается на интуитивное представление о пределе: при неограниченном увеличении числа сторон правильного многоугольника, вписанного в окружность, его периметр стремится к длине этой окружности, а площадь — к площади круга, ограниченного окружностью.

Движения

Отображение плоскости на себя. Понятие движения. Осевая и центральная симметрии. Параллельный перенос. Поворот. Наложения и движения.

Основная цель — познакомить учащихся с понятие: движения и его свойствами, с основными видами движений, с взаимоотношениями наложений и движений.

Движение плоскости вводится как отображение плоскости на себя, сохраняющее расстояние между точками. При рассмотрении видов движений основное внимание уделяется построению образов точек, прямых, отрезков, треугольников при осевой и центральной симметриях, параллельном переносе, поворот. На эффектных примерах показывается применение движений при решении геометрических задач.

Понятие наложения относится в данном курсе к числу основных понятий. Доказывается, что понятия наложения и движения являются эквивалентными: любое наложение является движением плоскости и обратно. Изучение доказательства не являете обязательным, однако следует рассмотреть связь понятий наложения и движения.

Об аксиомах геометрии

Беседа об аксиомах геометрии.

Основная цель — дать более глубокое представление о системе аксиом планиметрии и аксиоматическом методе.

В данной теме рассказывается о различных системах аксиом геометрии, в частности о различных способах введения понятия равенства фигур.

Повторение. Решение задач

Основная цель. Повторить, закрепить и обобщить основные ЗУН за основную школу.

VIII. Критерии и нормы оценки ЗУН обучающихся

1. **Оценка письменных контрольных работ** обучающихся поматематике.

Ответ оценивается отметкой «5», если:

- > работа выполнена полностью;
- ▶ в логических рассуждениях и обосновании решения нет пробелов и ошибок;
- ➤ в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

- работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
- ▶ допущены одна ошибка или есть два три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

➤ допущено более одной ошибки или более двух — трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

▶ допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Отметка «1» ставится, если:

- ▶ работа показала полное отсутствие у обучающегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.
 - 2. Оценка устных ответов обучающихся по математике.

Ответ оценивается отметкой «5», если ученик:

- **>** полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
- ▶ изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;
- ▶ правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
- ▶ показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;
- ▶ продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;
 - > отвечал самостоятельно, без наводящих вопросов учителя;

▶ возможны одна — две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

<u>Ответ оценивается отметкой «4»,</u> если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

- ▶ в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;
- ▶ допущены один два недочета при освещении основного содержания ответа, исправленные после замечания учителя;
- ▶ допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

- ▶ неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);
- ▶ имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
- ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
- ▶ при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Отметка «2» ставится в следующих случаях:

- > не раскрыто основное содержание учебного материала;
- ▶ обнаружено незнание учеником большей или наиболее важной части учебного материала;
- ➤ допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

Отметка «1» ставится, если:

ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изученному материалу.

Общая классификация ошибок

При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

Грубыми считаются ошибки:

- незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;
 - незнание наименований единиц измерения;
 - неумение выделить в ответе главное;
 - неумение применять знания, алгоритмы для решения задач;
 - неумение делать выводы и обобщения;
 - неумение читать и строить графики;
- неумение пользоваться первоисточниками, учебником и справочниками;
 - потеря корня или сохранение постороннего корня;
 - отбрасывание без объяснений одного из них;
 - равнозначные им ошибки;
 - вычислительные ошибки, если они не являются опиской;
 - логические ошибки.

К негрубым ошибкам следует отнести:

- неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного двух из этих признаков второстепенными;
 - неточность графика;
- нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);
 - нерациональные методы работы со справочной и другой литературой;
 - неумение решать задачи, выполнять задания в общем виде.

Недочетами являются:

- нерациональные приемы вычислений и преобразований; небрежное выполнение записей, чертежей, схем, графиков.

IX. Описание учебно-методического и материально-технического обеспечения образовательного процесса по предмету «Геометрия»

К техническим средствам обучения, которые могут эффективно использоваться на уроках геометрии, относятся компьютер, цифровой фотоаппарат, интерактивная доска и др.

Примеры работ при использовании компьютера:

- поиск дополнительной информации в Интернете;
- создание текста доклада;
- обработка данных проведенных геометрических исследований;

– создание мультимедийных презентаций (текстов с рисунками, фотографиями и т.д.), в том числе для представления результатов исследовательской и проектной деятельности.

При использовании компьютера учащиеся применяют полученные на уроках информатики инструментальные знания (например, умения работать с текстовыми, графическими редакторами и т.д.), тем самым у них формируется готовность и привычка к практическому применению новых информационных технологий. Технические средства на уроках математики широко привлекаются также при подготовке проектов (компьютер).

Обучение осуществляется по учебнику Геометрия. 7-9 классы: учебник для общеобразовательных учреждений / Л.С. Атанасян [и др.]. — М.: Просвещение, 2011.

Дополнительная литература:

- 1. Зив Б.Г. Геометрия: дидакт. материалы: 7 кл. М.: Просвещение, 2001.
- 2. Зив Б.Г. Геометрия: дидакт. материалы: 8 кл. М.: Просвещение, 2011.
- 3. Зив Б.Г. Геометрия: дидакт. материалы: 9 кл. М.: Просвещение, 2011.

Тематическое планирование 7 класс

Разделы програм мы			Характеристика основных видов деятельности ученика (на уровне учебных действий)
		Глава I.	Начальные геометрические сведения 8 ч
1. 2.	Прямая и отрезок. Луч и угол.	2	Объяснять, что такое отрезок, луч, угол, какие фигуры называются равными, как
3.	Сравнение отрезков и углов.	1	сравниваются и измеряются отрезки и углы, что такое радиус и градусная мера угла, какой угол называется прямым, тупым, острым, развернутым, что такое середина
4.	Измерение отрезков и углов.	1	отрезка и биссектриса угла, какие углы называются смежными и какие вертикальными; формулировать и обосновывать утверждения о свойствах смежных и вертикальных
5.	Перпендикулярные прямые.	1	углов; объяснять, какие прямые называются перпендикулярными; формулировать и обосновывать утверждение о свойстве двух прямых, перпендикулярных к третьей;
6. 7.	Решение задач.	2	изображать и распознавать указанные простейшие фигуры на чертежах; решать задачи, связанные с этими простейшими фигурами
8.	Контрольная работа №1.	1	
			Глава II. Треугольники 16 ч
9. 10. 11.	Первый признак равенства треугольников	3	Объяснять, какая фигура называется треугольником, что такое вершины, стороны, углы и периметр треугольника, какой треугольник называется равнобедренным и какой равносторонним, какие треугольники называются равными; изображать и распознавать
12. 13. 14.	Медиана, биссектрисы и высоты треугольника	3	на чертежах треугольники и их элементы; формулировать и доказывать теоремы о признаках равенства треугольников; объяснять, что называется перпендикуляром, проведённым из данной точки к данной прямой; формулировать и доказывать теорему
15. 16. 17.	Второй и третий признаки равенства треугольников	3	о перпендикуляре к прямой; объяснять, какие отрезки называются медианой, биссектрисой и высотой треугольника; формулировать и доказывать теоремы о свойствах равнобедренного треугольника; решать задачи, связанные с признаками
18. 19. 20.	Задачи на построение	3	равенства треугольников и свойствами равнобедренного треугольника; формулировать определение окружности; объяснять, что такое центр, радиус, хорда и диаметр окружности; решать простейшие задачи на построение (построение угла, равного
21. 22.	Решение задач	3	данному, построение биссектрисы угла, построение перпендикулярных прямых, построение середины отрезка) и более сложные задачи, использующие указанные

23.			простейшие; сопоставлять полученный результат с условием задачи; анализировать			
24.	Контрольная работа № 2	1	возможные случаи.			
	Глава III. Параллельные прямые 13 ч					
25.	Признаки параллельности		Формулировать определение параллельных прямых; объяснять с помощью рисунка,			
26.	двух прямых	4	какие углы, образованные при пересечении двух прямых секущей, называются накрест			
27.		4	лежащими, какие односторонними и какие соответственными; формулировать и			
28.			доказывать теоремы, выражающие признаки параллельности двух прямых; объяснять,			
29.	Аксиомы параллельных		что такое аксиомы геометрии и какие аксиомы уже использовались ранее;			
30.	прямых		формулировать аксиому параллельных прямых и выводить следствия из неё;			
31.		5	формулировать и доказывать теоремы о свойствах параллельных прямых, обратные			
32.			теоремам о признаках параллельности, связанных с накрест лежащими,			
33.			односторонними и соответственными углами, в связи с этим объяснять, что такое			
34.	Решение задач		условие и заключение теоремы, какая теорема называется обратной по отношению к			
35.		3	данной теореме; объяснять, в чём заключается метод доказательства от противного; приводить примеры использования этого метода; решать задачи на вычисление,			
36.			доказательство и построение, связанные с параллельными прямыми.			
37.	Контрольная работа №3	1				
		a IV. Соотноп	пения между сторонами и углами треугольника 18 ч			
38.	Сумма углов	2				
39.	треугольника					
40.	Соотношения между	3	Формулировать и доказывать теорему о сумме углов треугольника и её следствие о			
41.	сторонами и углами		внешнем угле треугольника; проводить классификацию треугольников по углам;			
42.	треугольника		формулировать и доказывать теорему о соотношениях между сторонами и углами			
43.	Контрольная работа №4	1	треугольника (прямое и обратное утверждения) и следствия из неё, теорему о			
44.	Прямоугольные	4	неравенстве треугольника; формулировать и доказывать теоремы о свойствах			
45.	треугольники		прямоугольных треугольников (прямоугольный треугольник с углом 30°, признаки			
46.	_		равенства прямоугольных треугольников); формулировать определения расстояния от			
47.		<u> </u>	точки до прямой, расстояния между параллельными прямыми; решать задачи на			
48.	Построение треугольника	4	вычисление, доказательство и построение, связанные с соотношениями между			
49.	по трем элементам		сторонами и углами треугольника и расстоянием между параллельными прямыми, при			
50.	_		необходимости проводить по ходу решения дополнительные построения, сопоставлять			
51.	B		полученный результат с условием задачи, в задачах на построение исследовать возможные случаи.			
52.	Решение задач	3	возможные случаи.			
53.	-					
54.						

55.	Контрольная работа №5	1	
56.	Повторение. Решение	10	
57.	задач		
58.			
59.			
60.			
61.			
62.			
63.			
64.			
65.			
66.	Резерв	5	
67.			
68.			
69.			
70.			

8 класс

Разделы програм мы			Характеристика основных видов деятельности ученика (на уровне учебных действий)
		Гл	ава V. Четырехугольники 14ч
1.	Многоугольники	2	Объяснять, что такое многоугольник, его вершины, смежные стороны,
2.			диагонали, изображать и распознавать многоугольники на чертежах;
3.	Параллелограмм и	6	показывать элементы многоугольника, его внутреннюю и внешнюю
4.	трапеция		области; формулировать определение выпуклого многоугольника;
5.			изображать и распознавать выпуклые и невыпуклые многоугольники;
6.			формулировать и доказывать утверждение о сумме углов выпуклого
7.			многоугольника; объяснять, какие стороны (вершины) четырёхугольника
8.			называются противоположными; формулировать определения
9.	Прямоугольник, ромб,	4	параллелограмма, трапеции, равнобедренной и прямоугольной трапеций,
10.	квадрат		прямоугольника, ромба, квадрата; изображать и распознавать эти
11.			четырехугольники; формулировать и доказывать утверждения об их
12.			свойствах и признаках; решать задачи на вычисление, доказательство и
13.	Решение задач.	1	построение, связанные с этими видами четырехугольников; объяснять,
14.	Контрольная работа №1.	1	какие две точки называются симметричными относительно прямой (точки),
			в каком случае фигура называется симметричной относительно прямой
			(точки) и что такое ось(центр) симметрии фигуры); приводить примеры
			фигур, обладающих осевой (центральной)симметрией, а также примеры осевой и центральной симметрий в окружающей нас обстановке.
			Глава VI. Площадь 14 ч
15.	Площадь	2	Объяснять, как производится измерение площадей многоугольников;
16.	многоугольника	∠	формулировать основные свойства площадей и выводить с их помощью
17.	Площадь	6	формулы площадей прямоугольника, параллелограмма, треугольника,
18.	параллелограмма,	U	трапеции; формулировать и доказывать теорему об отношении площадей
19.	треугольника и трапеции		треугольников, имеющих по равному углу; формулировать и доказывать
17.	треугольника и транеции		TP-JI OND III NOD, III CICILIIN IIO PUDITONIJ JINIJ, WOPNIJNII PODUID II AOKUSDIBUID

20.			теорему Пифагора и обратную ей; выводить формулу Герона для площади
21.			треугольника; решать задачи на вычисление и доказательство, связанные с
22.			формулами площадей и теоремой Пифагора.
23.	Теорема Пифагора.	3	
24.			
25.			
26.	Решение задач	2	
27.			
28.	Контрольная работа № 2	1	
			VII. Подобные треугольники 19 ч
29.	Определение подобных	2	Объяснять понятие пропорциональности отрезков; формулировать
30.	треугольников		определения подобных треугольников и коэффициента подобия;
31.	Признаки подобия	5	формулировать и доказывать теоремы: об отношении площадей подобных
32.	треугольников		треугольников, о признаках подобия треугольников, о средней линии
33.			треугольника, о пересечении медиан
34.			треугольника, о пропорциональных отрезках в прямоугольном
35.			треугольнике; объяснять, что такое метод подобия в задачах на построение,
36.	Контрольная работа №3	1	и приводить примеры применения этого метода;
37.	Применение подобия к	7	объяснять, как можно использовать свойства подобных треугольников в
38.	доказательству теорем и		измерительных работах на местности; объяснять, как ввести понятие
39.	решению задач		подобия для произвольных фигур; формулировать определения и
40.			иллюстрировать понятия синуса, косинуса и тангенса острого угла
41.			прямоугольного треугольника; выводить основное тригонометрическое
42.			тождество и значения синуса, косинуса и тангенса для углов 30° , 45° , 60° ;
43.			решать задачи, связанные с подобием треугольников, для вычисления
44.	Соотношения между	3	значений тригонометрических функций использовать компьютерные
45.	сторонами и углами		программы.
	прямоугольного		
46.	треугольника		

47.	Контрольная работа №4	1				
	Глава VIII. Окружность 17 ч					
48.	Касательная к	3	Исследовать взаимное расположение прямой и окружности; формулировать			
49.	окружности		определение касательной к окружности; формулировать и доказывать			
50.			теоремы: о свойстве касательной, о признаке касательной, об отрезках			
51.	Центральные и	4	касательных, проведенных из одной точки; формулировать понятие			
52.	вписанные углы		центрального угла и градусной меры дуги окружности; формулировать и			
53.			доказывать теоремы: о вписанном угле, о произведении отрезков			
54.			пересекающихся хорд; формулировать и доказывать теоремы, связанные с			
55.	Четыре замечательные	3	замечательными точками треугольника: о биссектрисе угла и, как			
56.	точки треугольника		следствие, о пересечении биссектрис треугольника; о серединном			
57.			перпендикуляре к отрезку и, как следствие, о пересечении серединных			
58.	Вписанная и описанная	4	перпендикуляров к сторонам треугольника; о пересечении высот			
59.	окружности		треугольника; формулировать определения окружностей, вписанной в			
60.			многоугольник и описанной около многоугольника; формулировать и доказывать теоремы: об окружности, вписанной в треугольник; об			
61.			окружности, описанной около треугольника; о свойстве сторон описанного			
62.	Решение задач	2	четырехугольника; о свойстве углов вписанного четырехугольника; решать			
63.			задачи на вычисление, доказательство и построение, связанные с			
64.	Контрольная работа №5	1	окружностью, вписанными и описанными треугольниками и четырехугольниками; исследовать свойства конфигураций, связанных с окружностью, с помощью компьютерных программ.			
65.	Повторение. Решение зада	ач 4 ч				
66.						
67.						
68.						
69.	Резерв	2				
70.						

9 класс

Разделы			
програм	Основное содержание п	о темам	Характеристика основных видов деятельности ученика (на уровне учебных
МЫ	o one zne vezapaname ne remana		действий)
	L		Глава IX. Векторы 8 ч
1.	Понятие вектора	2	Формулировать определения и иллюстрировать понятия вектора, его
2.	•		длины, коллинеарных и равных векторов; мотивировать введение понятий
3.	Сложение и вычитание	3	и действий, связанных с векторами, соответствующими примерами,
4.	векторов		относящимися к физическим векторным величинам; применять векторы и
5.			действия над ними при решении геометрических задач
6.	Умножение вектора на	3	
7.	число. Применение		
	векторов к решению		
8.	задач		
	,		лава Х. Метод координат 10 ч
9.	Координаты вектора	2	Объяснять и иллюстрировать понятия прямоугольной системы координат,
10.			координат точки и координат вектора; выводить и использовать при
11.	Простейшие задачи в	2	решении задач формулы координат середины отрезка, длины вектора,
12.	координатах		расстояния между двумя точками, уравнения окружности и прямой.
13.	Уравнения окружности и	3	
14.	прямой		
15.			
16.	Решение задач	2	
17.			
18.	Контрольная работа № 1	1	
			углами треугольника. Скалярное произведение векторов 11 ч
19.	Синус, косинус, тангенс	3	Формулировать и иллюстрировать определения синуса, косинуса и
20.	угла		тангенса углов от 0^0 до 180^0 ; выводить основное тригонометрическое
21.			тождество и формулы приведения; формулировать и доказывать теоремы

	Соотношения между	4	CHINGOD II KOCHINGOD IIDIMAHGTI IIV IIDII BAHIAHIJII TBAYTOTI HIJGOD
22.	сторонами и углами	4	синусов и косинусов, применять их при решении треугольников; объяснять, как используются тригонометрические формулы в
24.	треугольника.		измерительных работах на местности; формулировать определения угла
25.	треугольника.		между векторами и скалярного произведения векторов; выводить формулу
	C	2	скалярного произведения через координаты векторов; формулировать и
26.	Скалярное произведение	Z	обосновывать утверждение о свойствах скалярного произведения;
27.	Векторов	1	использовать скалярное произведение векторов при решении задач.
28.	Решение задач	1 1	использовать скалирное произведение векторов при решении задач.
29.	Контрольная работа № 2	1	
	1		Длина окружности и площадь круга 12 ч
30.	Правильные	4	Формулировать определение правильного многоугольника; формулировать
31.	многоугольники		и доказывать теоремы об окружностях, описанной около правильного
32.			многоугольника и вписанной в него; выводить и использовать формулы для
33.			вычисления площади правильного многоугольника, его стороны и радиуса
34.	Длина окружности и		вписанной окружности; решать задачи на построение правильных
35.	площадь круга	4	многоугольников; объяснять понятия длины окружности и площади круга;
36.			выводить формулы для вычисления длины окружности и длины дуги,
37.			площади круга и площади кругового сектора; применять эти формулы при
38.	Решение задач	3	решении задач.
39.			
40.			
41.	Контрольная работа № 3	1	
			Глава XIII Движения 9 ч
42.	Понятие движения	3	Объяснять, что такое отображение плоскости на себя и в каком случае оно
43.			называется движением плоскости; объяснять, что такое осевая симметрия,
44.			центральная симметрия, параллельный перенос и поворот; обосновывать,
45.	Параллельный перенос и	3	что эти отображения плоскости на себя являются движениями; объяснять,
46.	поворот	-	какова связь между движениями и наложениями; иллюстрировать
47.			основные виды движений, в том числе и с помощью компьютерных
48.	Решение задач	2	программ.

49.			
50.	Контрольная работа № 4	1	
		ава XIV. Н	Тачальные сведения из стереометрии 8 ч
51.	Многогранники	4	Объяснять, что такое многогранник, его грани, рёбра, вершины, диагонали,
52.			какой многогранник называется выпуклым, что такое п-угольная призма, её
53.			основания, боковые грани и боковые рёбра, какая призма называется
54.			прямой и какая наклонной, что такое высота призмы, какая призма
55.	Тела и поверхности вращения	4	называется параллелепипедом и какой параллелепипед называется прямоугольным; формулировать и обосновывать утверждения о свойстве диагоналей параллелепипеда и о квадрате диагонали прямоугольного параллелепипеда; объяснять, что такое объём многогранника; выводить (с помощью принципа Кавальери) формулу объёма прямоугольного
56.			параллелепипеда; объяснять, какой многогранник называется пирамидой, что такое основание, вершина, боковые грани, боковые рёбра и высота пирамиды, какая пирамида называется правильной, что такое апофема правильной пирамиды, приводить формулу объёма пирамиды; объяснять, какое тело называется цилиндром, что такое его ось, высота, основание,
57.			радиус, боковая поверхность, образующие, развёртка боковой поверхности, какими формулами выражаются объём и площадь боковой поверхности цилиндра; объяснять, какое тело называется конусом, что такое его ось, высота, основание, боковая поверхность, образующие, развертка боковой поверхности, какими формулами выражаются объём конуса и площадь
58.			боковой поверхности; объяснять, какая поверхность называется сферой и какое тело называется шаром, что такое радиус и диаметр сферы (шара), какими формулами выражаются объём шара и площадь сферы; изображать и распознавать на рисунках призму, параллелепипед, пирамиду, цилиндр, конус, шар.
	Об аксиомах планиметрии		
Повторение. Решение задач		4	
Резерв		4	

Список литературы:

- 1. Атанасян Л.С., Бутузов В.Ф., Глазков Ю.А., Юдина И.И. Геометрия. 7–9 классы: Рабочая тетрадь. М.: Просвещение, 2013.
- 2. Атанасян Л.С., Бутузов В.Ф., Глазков Ю.А., Некрасов В.Б., Юдина И.И. Изучение геометрии в 7–9 классах: Методическое пособие. М.: Просвещение, 2012.
- 3. Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Позняк Э.Г., Юдина И.И. Геометрия. 7–9 классы: Учебник для общеобразовательных учреждений. М.: Просвещение, 2013.
- 4. Бурмистрова Т.А. Геометрия. 7–9 классы: Сборник рабочих программ. М.: Просвещение, 2012.
- 5. Бутузов В.Ф. Геометрия. 7–9 классы: Рабочие программы к учебнику Л.С. Атанасяна и др. М.: Просвещение, 2012.
- 6. Гаврилова Н.Ф. Геометрия. 8 класс: Контрольно-измерительные материалы. М.: ВАКО, 2014.
 - 7. Гаврилова Н.Ф. Геометрия. 8 класс: Поурочные разработки. М.: ВАКО, 2014.
- 8. Зив Б.Г., Мейлер В.М. Геометрия. 8 класс: Дидактические материалы. М.: Просвещение, 2012.
- 9. Зив Б.Г., Мейлер В.М., Баханский А.Г. Геометрия. 7–11 классы: Задачи по геометрии. М.: Просвещение, 2012.
- 10. Иченская М.А. Геометрия. 7–9 классы: Самостоятельные и контрольные работы. М.: Просвещение, 2012.
- 11. Концепция Федеральных государственных образовательных стандартов общего образования / Под ред. А.М. Кондакова, А.А. Кузнецова. М.: Просвещение, 2008. 13. Мищенко Т.М., Блинков А.Д. Геометрия.